SF 298 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

-

REPORT DOCUMENTATION PAGE Ao 7188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Atlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REBORT TYPE AND DATES COVERED
12/16/96 Fnel
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
) - See Repoet -
6. AUTHOR(S) | \quﬁHol’L"?s /‘0347
Wolf Kohn, Anil Nerode
7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Mathematical Sciences Institute REPORT NUMBER

Cornell University
409 College Avenue, Rm. 321
Ithaca, NY 14850

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

U.S. Army Research Office
P.O.Box 12211

Research Triangle Park, NC 27709-2211 ALs 34 80).)-mA-sIT

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as
an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

We present a preliminary design of a hardware architecture for computing initial
segrents of primitive recursive functions and iterative processes. The formulation
of the architecture is based in a paradigm which proposes.a procedure for (1). encoding
a function or process and, (2)carrying out the computation. The paradigm is firmly rootdd
in the formalism of quantum mechanics. We propose as our representation of the
architecture a generic regular multiparticle, two-dimensional lattice. This lattice is
a model of crystal structures that in principle, can be produced in the lab today.

99702

14. SUBJECT TERMS 15. NUMBER IF PAGES

22
16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION’ | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OR REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 (Rev. 2-89
3 Dise Guaassd¥ INSPECIED 1 Zégs?itzaed by ANSI sw.(zas-m)

NSN 7540-01-280-5500

QUANTUM WAVE PROCESSOR
RESEARCH REPORT

BY

Wolf Kohn
and
Anil Nerode

Quantum Wave Processor
Research Report

Wolf Kohn
Anil Nerode

Problem Statement

This document describes ongoing research for the formulation, analysis and
implementation of a programmable device, termed Quantum Function Evaluator (QFE),
that uses quantum state propagation as a paradigm for computing objects of a class I of
functions herein referred to as the computable class. The proposed research is divided
into three phases: Formulation, Evaluation and Implementation. We will discuss an
outline of the first phase in the next sections.

Outline of formulation Phase

Over a period of several years, Kohn and Nerode have conducted joint and independent
research to explore formal methods in Hybrid System Theories [1], [2], [3], [4], [5]. [6],
[7] to determine effective computational procedures for generating control laws in a
variety of application domains. The quantum computing paradigm and its possible
implementation proposed for this research effort, constitute a significant extension of the
results in our early efforts. This outline provides a brief synopsis of our proposed
paradigm and a preliminary sketch of a possible implementation architecture. The
Formulation phase of our study is composed of two major tasks: the detailed specification
of the proposed paradigm and the detailed specification of an implementation
architecture. We will outline the major features of these two items next.

Paradigm
The main aspects of our proposed paradigm are summarized in Figure 1. The proposed
computational paradigm is composed of seven sequential steps. We outline their
functionality next.
Input Function: Each Input Function is either a map of the form:

f:8§%x -+ xS »D
where S,,1=1, ..., N and D are finite subsets of the naturals of the form:

S, = {0, -+, N;}

D= {0, - N,}

or a solution of an iterative process of the form:

yi, = fi(yi,, oy y:) ,i=1,...,k
with

f: 8> S,8={0,1, .., N}
Let p be the natural number defined by:

p = mz(}x{{Ni ,i= 1, ., N}, Nd}

Then, we can express f by the encoding:

F:[0,1,...,p"] = [0, 1, ..p]

ey

F(x) f(ng, ..., ny,) , If defined
X) =
0 Otherwise

Input Function

Continualization

Finite Hilbert Expansion

V ariational Model

Quantization

Realization

Computation

Figure 1. Quantum Computing Paradigm

Thus, the encoding is a discrete function with domain on certain points of the real line,
taking values in a subset of points of the real line coinciding with the values in the range
of f and mapping to 0 any encoding x that corresponds to a tuple not in the domain of f.

The central objective behind our paradigm is to find effective and fast means to compute
discrete finite-valued functions via Quantum Approximations to their encoding. We will
characterize the nature of these approximations later on. We conclude the overview of the
Input Function element of our paradigm with a formal definition of the class I of
computable functions.

The class I of computable input functions is defined as follows:

(1) I'contains all the functions encodable in one step as above.

i) If {f;, =, £, f; : S, -+ XSy > Sy,,, Kfinite, S, ={1, ... N;, N, , finite }}
is a subset of I, so is their direct sum: f, @ - @ fi : S, x -+ XSy = SK,.

(iii) I contains the projection functions:
P :S, X - XSy =S, p (0, . ny, o, ny) =0,

1

G IFE{f, -, B, £ 2 Sy x - xSy = Sy, K finite, S, ={L .., N,, N, finite }}
is a subset of I and g: S§, = Sy, is in I, so is the composition:

g(f, o, £) S X -+ XSy = Sy,

v) If for each ne N, g: NxS§x .- xS, >N is in I so is
min{n, g(n,n,, -, ng) = 0}.

(Vi) If g: N XS, — S, is in I, then the family of functions,
{f: NXS x -+ xS — S,;, f(n+1, n,,...,) = g(n,f(n,n,, ..., nk))} isin I.

(vii) Any function constructed by the finite application of (i)-(vi) is in L

We note that the defining characteristic of I is that its elements are either an encoding or
can be transformed into an encoding via finite number of steps (ii)- (vii) above. We
conclude the outline of the input function with the following observation: although the
class I of computable functions I includes only completely specified functions, it can be
extended to a larger class which include discrete partially specified functions (relations).
We will discuss this extension in a future report.

Continualization: We can complete the encoding function F into a step function ® with
the following identity:

o :[O, pN") —)[0, pN'l)

.)
®(y) = F(x), foreachy, ye[x,x+1), xe{0, ...p""}

Figure 2 illustrates this identity for the encoding of the function given in Table 1. We

refer to the process of constructing ® as Continualization. With some needed

modifications, this continualization process can be extended to discrete functions that are
specified as solutions of iterations of the form:

Table 1.
ng| nq f X F
0 0 2 0 2
0] 1 1 1 1
0] 2 1 2 1
110] 0 3 0
1 1 2 4 2
1 2 2 5 2
2 0 1 6 1
2 1 0 7 0
21210 8 0
Original Function Encoding
o
4

1 | i] 1 | I] >
1 2 3 4 5 6 7 8
Step Function
Figure 2. Continualization of a function
Zyy = g(Zk’ k)
with A3)

Z, e S", S= {0, ..., N, N finite} for each k, k an integer

Following Kushner and Clark [8], the encoding and continualization of a process of the
form of (3) leads to a differential equation of the form of (4) together with a sampling
rule of the form of (5):

X(t) = G(x(t),) + B(t) @

G(, t)= continualized version of g(-, k), t €[kA, (k+1)A), ke N 5)

and B(t) is a 'convergence' function satisfying the following conditions:
B is bounded, and B(t) goes to zero as t — eoquadratically. Under general conditions, one
can show [9] that particular solutions of (4) are asymptotically stable in the sense of

Lyapunov. In (5), A is a scaling parameter chosen to transform the iteration variable k
into the time variable t.

Finite Hilbert Expansion: The continualized functions, appearing in (1) or (4) may be
expanded in a discrete Hilbert space 7, in terms of an orthogonal basis set such as the set

of p-valued Chrestenton functions. The general form of a Chrestenton basis function is
given below.

Chrestenton function: @'(x) = exp(*— 1 Z _oJN-tes) 'ij
p

. . N-1, N-1- N-1 N-1-
WIthJ= ZS=0JS : p ’ » X= 2s=0xs) p ’

For the sake of simplicity, we will continue our discussion here under the assumption that
the selected bases are the Chrestenton functions, although during the study of tunneling
as a mechanism for implementing quantum oracles we may need to switch to other
bases.

Let B, = {(pk | @*: [O pN"] - [O pN"] k=0, .-, pV -1} be an orthogonal basis for
7,- That is, J(p (x)-@'(x)dx = c-6,, for each k, 1 in {0 oY -1}. The function
F can be expanded in terms of B, as follows:

D(x) = Y B ¢*(x) ©)
x€[0,p]"

with

pJ‘(I>(x)-g3k(x)-dx
Bo= °
Iqo (x)-@*(x)-dx

We note that if we know the spectrum {ﬁk} We can easily compute @, via (1), extract

the encoding F from it and from F determine the original function f. However even for
functions of more than academic interest, the number of terms in the spectrum runs in the

range of 105 to 1012, The central idea, in this regard, is that we can find very close
approximations to this evaluation by a hardware quantum device, which we will discuss

in the next section. For the moment, in this section, we continue with the description of
the paradigm.

Variational Model: Given a computational process to be carried out, expressed in the
form of the differential equation (4), we want to formulate the computation of the
solution x(t), as a variational problem. Our purpose is to proceed from this to obtain a
quantum mechanical "program " for computing the solution. For the purposes of this
report, we will describe the variational formulation formally. Mathematical rigor will
follow in future reports.

The variational formulation is of the form:
min j L(x, %, t)-dt)

where L known, as the lagrangian function, is chosen so that for specific boundary
conditions the solutions of (7) and (4) coincide. For the purposes of our procedure we
assume that L is three times continuously differentiable in its arguments. We now
proceed to describe how L is determined from the function G, constructed earlier.
Towards this objective we write the necessary conditions for optimality in (7), The Euler
Lagrange conditions. They are expressed by the following second order differential
equation:

xL,, + XL, +L,-L, =0 ®
Here and in the derivations that follow subindices indicate partial derivatives.
Differentiating (4) with respect to t, to obtain a definition for X, replacing in (8), and

differentiating the result with respect to %, we obtain, after some algebra, the following
partial differential equation :

Ly + GLy + XLy, + (%3G, + G, +B,)Lx,.‘; =0)
Let
q(x, %, t) = L, (x, x, t) (10)
In terms of q, (9) takes the form,
q + G.q + xq, + (%G, + G, + B,)q, = 0 (11)

That is, q satisfies a linear hyperbolic equation, whose solution can be computed by the
method of characteristics ([10]). Once a solution for q is obtained L can be determined
from (10) by a double quadrature. In summary, given (4) we construct by the procedure
sketched above the corresponding lagrangian.

Quantization: In order to quantize the program described by (7), one introduces the
canonical conjugate variables: generalized position and momentum [12]. In the canonical
Quantization these are chosen as follows: position variable, representing the position
operator, is represented by x, and the momentum variable is chosen as:

p=1L (12)
The components of x, p satisfy the canonical commutation relations:
[xep] =i, k1= 1,..,N (13)

Next, we define the Hamiltonian of the system as follows:

H(xs P)= zpk' X, - L (14)

The equation of motion of the system representing the program to be executed is then the
Schodinger equation given by :

iha%-l\lf(t)) = H(x, ilaix) E10) (15)

Realization: Assume that a physical system, the hardware, is available to us. This system
is characterized by the Hamiltonian operator H,. The realization step consists in

engineering a field Hamiltonian H, such that the hardware, when interacting with this
field satisfies the following condition:
H, + H; - H| < ¢ (16)

where | - | denotes a suitably selected operator norm and € is an engineering parameter
chosen to satisfy precision requirements for the computation.

The general idea is that the discrete spectrum of the composite Hamiltonian H, + H,

approximates the spectrum of the function or process being computed (see (6) above).
Precisely, we will devote our next report to prove the following result:

"Let

{A: k=1, .., N} be a subset of the eigenvalues of H, + H, with corresponding
eigenvectors {\¥, k = 1, ..., N}:

(H, + H,) [¥,) = X[
then

A - Bl < &4

and

[lo*®)-¥,(x)] - dx < &
0
where @ is a Chrestenton function"

Thus computing a discrete function or a discrete process can be approximated by exciting
the hardware system appropriately and reading the resulting spectrum.

Computation: The computation, to a large extent, consists in simulating the system
characterized by H, + H; using the hardware characterized by H,, and excited by the
field whose Hamiltonian is H,;. Our research about computation is geared towards

developing an effective translator that converts an input function or process of the class I
into a Hamiltonian operator H and a resolution element that extracts the excitation

Hamiltonian H;. Our long term objectives are to design and implement a prototype
system that operates according to the paradigm outlined in this section.

Quantum Processor

Transducer |~ { Read-out

i

Frequency
Control

r

Coherent Memory

L&

Figure 3. Functional Architecture for Quantum Computing

Architecture

In this section we propose a preliminary design of an architecture that implements the
paradigm presented in the previous section. A functional model of our proposed
architecture is depicted in Figure 3. We will next discuss briefly the functionality of the
elements composing our proposed architecture:

Input Function - Given a discrete function or process to be computed, this element
implements the compilation process; that is, it determines the excitation Hamiltonian,

H;, which encodes the function or process . This is a symbolic computation whose steps
are carried out following the paradigm described in the previous section. These steps can
be described by an iterative process such as (3) so in principle the compilation process
could be carried out by the architecture itself. We will explore the mechanization of the
compilation process in this direction.

Excitation Generator - This is a device that realizes physically the field excitation
encoded in H;. That is, the excitation generator converts a description of the

computation into a physical implementation . The idea is for this device to address each
individual particle of the quantum process described below and to excite them according
to the desired state behavior dictated by:

b Z%(1) = (H, + Hf)(x, %5?;) ®()

Our research in this area will be focused on the development of a mechanization process

for realizing this functionality. We will consider two alternatives: optical or particle
(electron) excitation. A more detailed discussion of these two alternatives will be
provided in our next report.

Quantum Processor - This is the device which actually carries the computation. Without
excitation, it is a realization of the Hamiltonian H,. After excitation it is a realization of

H = H, + H;. We will provide next an abstracted model of the physical characteristics
of the Quantum Processor.

The Quantum Processor is an array of identical particles assembled into a regular lattice.
For the purposes of discussion we will consider a two-dimensional lattice. A later report
will be devoted to the formulation of the physical characteristics of the lattice; in this
report we will be concerned only with the formulation of some of its computational
behavior.

A diagram of the Quantum Processor is shown in Figure 4. The device is composed of
two elements: the computational lattice of particles and the field excitation device. From
a computational point of view each particle which is allocated to a node in the lattice, can
be represented as a non-deterministic, two-level state automaton, and an interface
function called Input selector function as shown in Figure 5. We proceed to describe their
functionality next.

In the Lower Automaton, the block labeled 'State transition' in figure 5 characterizes the
programmable discrete spectrum of the particle. The states of the automaton represent
energy levels, and edges represent allowable energy transitions. This is illustrated in
Figure 6 below.

qlgla

! I)

WA
: E.g-a
i %2\
R
WA
T
i
A
IR

\/zmnal\ /amd\ Z

Boundary

RS Quantum Computational

Element
I Quantum forward bond

Quantum lateral bond

Excitation path

Figure 4. Quantum Processor

Lower Automaton

|
1.'-"-
| !
L |
é |
-
_m ' E _
S 8 £ _ g
'3 15| % 3
i '/}
1s [&]] = |I §
& 1Z1]] 2 k
| ® 8 H | 8
£ H &
_ & 2 |)
R
|
||||$||
I
[
8
Lyl

Excitat ion
Neighbor hood

stares

Figure 5. Quantum Particle

10

In Figure 6, the energy levels correspond to eigenvalues (or sets of eigenvalues forming a
band grouped together as a single eigenstate) of the corresponding Hamiltonian. The
edges correspond to energy transitions. Edges pointing up are driven by excitation: that
is, the transition is effected by absorption of energy from the excitation. Edges pointing
down correspond to relaxation effects: the particle releases energy of the appropriate
frequency either to neighborhood particles or to the field (see Figure 7).

 §

Energy States

I !
! .

Ground Spectrum (single aggregated state)

Energy Level

—_— Allowable Transition

Figure 6. State energy transition example

Ay

kv, =4 - A4
A

Figure 7. A state transition

In Figure 7, A, and A, are energy levels, and the transition between them is driven by
excitation energy to frequency Vv,,. Note from Figure 5 that energy can come to the

particle either by interaction with the other particles or from the external excitation.
Relaxation transitions are similar.

The state transition in the lower level automaton is controlled by the mixing state

probability density transition computed by the Upper Level Automaton. State transition in
this automaton is called 'probability transition' in Figure 5.

The mechanism that implements commands issued by the upper level automaton in the

lower level automaton is called Transition Selector in Figure 5. We will explain its
functionality next. For this we need some preliminary definitions.

Let S= {|‘~I’k(t)), keN, N ﬁnite} be the states of the lower automaton in each

particle. the let A be the update time of the particle. The update time of the particle is
the determined to be larger than 10 times the maximum relaxation time of any of the
state transitions in the lower automaton. The state of the lower level automaton in each

interval [t, t + A) is a Chattering Combination of the elements of S. A Chattering

Combination of the set of functions in the interval is a function |‘I’(t)) defined as
follows:

(@) te 1,0
¥, (r) eI, (1)

|P(r)) =1 (17)
¥ (r) 7€ L. (t)
¥, (r) te L (1)
where I, (t), j, € N, is a semi-open interval in [t, t+A) :
k-1 k
L ()= [t+ZAjl(t), t+ > A, (t)) (18)
1=0 1=0

We note from (17) that the composite state |¥(7)) is constructed by 'stitching' together

the pure states in S. The time spent in pure state |‘I’Jk> € S, Ajk(t) is a function of the
characteristic excitation or relaxation times associated with the state [11]. We note that

YA =A (19)
and, if we define ‘
A, (®)
@)= == (20)

then equation (19) can be written as

Yo, (t) = 1 21

k

The set of all Chattering Combinations of S in the interval [t, t + A) is denoted by

A

S(t,t + A). The union of these sets for all time is denoted by S. Now we can specify the
operation of the Transition Selector in the lower automaton of our particle model. For
each interval [t, t + A), the Transition Selector receives a command from the upper

level automaton, which consists of an ordered tuple of coefficients (ajk (t), j, eN »)

satisfying (21), and then it computes the mixed state of the particle, |‘I’(t)), according to

(17). The state of the lattice is composed of the states of each of its particles. We will see
shortly that the Chattering Coefficients have the interpretation of state occupancy
probabilities. To demonstrate that, we need to discuss the dynamic structure of the upper
level automaton.

In general, there is not enough information to say that the lattice or any of its particles is
characterized by a specific state function. The best we can do, in order to describe the
computation, is to give a probabilistic description. In the quantum formalism, this
description is referred to as the probability density description [12].

Let S be the set of primitive states of the lower level automaton. Let p; be the

probability that the particle is in state ‘¥, € S. The probability density operator [13], p,
is defined by

p() = Tp, [HON¥) @)

By differentiating (22) and using (15), after some algebra, we obtain an (operator)
differential equation for p :

J
ih —p=H-p-p-H 23
I P p-p (23)

The operator is termed the commutator and is written as [H p]. Thus

ik —gt— p = [H, p] | (24)

Given an observable characterized by, say, operator C, the associated observed quantity,
denoted by (C), is given by the expectation of C relative to p :

(C)= trace(p-C) (25)

Equation (24) characterizes the computation carried out by the upper level automaton.
Equation (25) characterizes the Transducer of our architecture (see Figure 3). We will
devote a future report to discussion of this device in detail.

13

Notice that the state function, computed by the lower level automaton, could be given as
a linear combination of the states in S. We chose to model it as a Chattering
Combination, which turns out to be equivalent in a specific sense (as we will show
shortly) because in this form it will allow us to formulate the sequence of excitation
steps (realized by the excitation element, see Figures 4 and 5). To a large extent,
programming the quantum processor is tantamount to determining this sequence. To
justify this statement, we must explain the sense in which the Chattering and Linear State
Combinations are equivalent, because an extension of this result to Excitation
Hamiltonians will provide us with a strategy for implementing excitation sequencing .

The equivalence between Linear and Chattering Combinations of state functions from a
given set S is established in the following version of the Chattering Lemma [14]:

Chattering Lemma. Let S= {¥(t)), k € N,, N, finite} and let § be the set of
chattering combinations of S. Let &, € real and positive be given. There exist state

Bp

functions |®j> € §, defined for each tuple {a,, ey O

o, =0, zal = 1}, such that

max < & (26)
t

i {l@ () Zallw»} ar

1=1

forall (..., @,) .

The proof of this lemma, while not difficult, requires extensive manipulations. We will
provide it in a companion report devoted exclusively to the chattering aspects of our
proposed architecture. Notice that the lemma says that every chattering combination of
state functions of the form of (17) on a set S, can be realized as a linear combination of
elements from S with an arbitrary small error in the integral sense (see (26)). We also
have the fact that under strong continuity assumptions on the state functions the converse
of the lemma is also true. By choosing the boundary conditions in our lattice model
appropriately, this assumption is not limiting .

Now we proceed to describe the functionality of the Input selector function. This
function models the interaction of the particle with the excitation and with the other
particles in the lattice. Some examples of possible particle interaction are shown in Figure
8. For simplicity, only nearest neighboring interactions are shown, but the model is not
limited to these cases. The central task implemented by the input selector function is to
establish on one hand the interaction of a particle with the other particles in the lattice and
on the other hand the interaction of a particle with the excitation field in order to

characterize these two tasks we look more closely at the excitation field Hamiltonian H;.

Locally, centered in a particle, it is convenient to write H; as the sum of two terms, the
first, H,, corresponding to the interaction of the particle with the excitation, and the

second H, corresponding to the interaction of the particle with its internal energy and
with the interaction energies of the other particles in the lattice. Thus we write

H, = H, + H, @7

)

(&)

L
1|
p

4
()

A tripole Interaction A dipole Interaction A quadrupole Interaction

Figure 8. Some examples of particle interaction

Under general assumptions about the lattice, the interaction Hamiltonian H, for given
particle can be written as

H|¥)= gw(Hil’"-’ H:")N’) (28)

where H; for each j is the interaction Hamiltonian of the given particle with its
'neighboring' particle ij , and g, is the neighborhood function at the current state of the
particle, . The neighborhood function represents the local (at the current state V)
structure of interaction of the particles in the lattice. This structure can be determined by
building the lagrangian associated with the lattice and go to the procedure of quantization
that we discussed earlier. We will carry out this task once the details of the physics of the
lattice are defined in the evaluation phase. The approach consist in defining potentials to
characterize interaction. For example, a dipole (particle-to-particle) interaction between a

particle located in coordinates x, y of the lattice may be characterized by a potential V of
the form:

1
V(X, Y, t) = dx_y (t) m

where d., is a relaxation function.

For the purposes of analysis and also to determine a detailed formulation of the
realization step in our paradigm, it is convenient to assume that a finite set of primitive

excitation Hamiltonians E = {H'e ,i= 1., ne} can be realized and that implementation

of our excitation is carried out by chattering among the elements of E over the update
interval A . Specifically,

[HY|¥(r)) te I, ()

HZ|¥(7)) T € I (1)

H,|¥(7)) = - 5 (29)
H-|¥(r)) te I_ (1)

| HA () e I (1)

Where the sets I; (t) are defined by expression (18). This type of probabilistic resonance

is central to our proposed implementation of the quantum processor. The idea is to induce
a probability distribution p on the states of the particles on the lattice so that the
realization criterion is satisfied.

Thus a computation in the lattice is a propagating probabilistic wave-train in which the
state of each particle is the probability distribution of its pure states. This is illustrated in
Figure 9. Specifically the lattice is at an initial probabilistic state, the programmed

excitation is impinged and after a transient period & has elapsed, the read out period, the
transducer is activated to effect the eigen-value observation. After the observation has
been made, the computation process is complete. If the results are not satisfactory the
computation is started again from the initial probabilistic state and the read-out period is

extended to & > & . This extension period cannot be extended arbitrarily because the

thermal relaxation mechanisms in the lattice will induce eventually decoherence, that is,
the loss of the probabilistic resonance described above.

Let {E,} be the discrete spectrum of the physical Hamiltonian H,. Then it can be shown
using (24), that the transition probability p, ; from eigenstate i to eigenstate j satisfies,

., 0
lhgt_plj(t) = (Ex - E]) pij+ [Hf’p]ij (30)

In [11], it is shown that if the system is at state |‘I‘3> at time t= 0, then the presence of the
relaxation Hamiltonian (28) causes the corresponding probability density term p,; to
decay exponentially with time. For small values of t, p; is the largest term in the matrix

representation of the probability density operator. Assuming no excitation, and using (30)
this term satisfies the following equation:

. 0
ll"rg)t"pjj = 2((Hl)jkpkj - pjk(Hl)kj) €2y
k
with

. d .
1h_ét—pji = (Ej’ Ei)' P - pﬁ'(Hl)ji fori#j (32)

16

The solution of (31) and (32) for p;; is given by:
py(t)= e (33)

where £ is a relaxation time that depends on the physical characteristics of the lattice.
Thus the effect of the inter particle excitation Hamiltonian is to randomize the state
transitions in each particle. The computation described above will be corrupted by this

effect. Therefore, the read-out period { must be chosen so that this effect is acceptable;

this means § << &. We will use this bound in our design specifications of the quantum
processor and also, in our computability analysis.

Forward Wave Direction

Backwards Wave Direction

Figure 9. Wave Propagation

Conclusions

In this paper we present a preliminary design of a hardware architecture for computing
initial segments of primitive recursive functions and iterative processes. The formulation
of the architecture is based in a paradigm which proposes a procedure for 1- encoding a
function or process and 2- Carry out the computation. The paradigm is firmly rooted in
the formalism of quantum mechanics. We propose as our representation of the
architecture a generic regular multiparticle, two-dimensional lattice. This lattice is a
model of crystal structures that in principle, can be produced in the lab today.

References

[1] Kohn W. "Distributed Hierarchical Automata with some Applications to Genetics in
Prokaryotes”, Ph.D. dissertation, MIT EE., 1978, Cambridge Mass.

[2] Kohn W. " The Rational Tree Machine" SPIE vol. 1095 VII pp. 264-274, 1989.

[3] Kohn W. Graham R.V., Butler J.W., "The rational Tree Machine", Proc. IEEE
Northcon 88, pp. 330-347, Seattle Oct. 1988.

[4] Kohn W., Kumar S. "Parallel Simulation of the Rational Machine" Boeing Electronics
BE.-499-5 July 7, 1989.

[5] W. Kohn and A. Nerode, *‘Models for hybrid systems: automata, topologies,
controllability and observability", Hybrid Systems ,(R. Grossman, A. Nerode, A. Ravn,
H. Rischel Eds.) Lecture Notes in Computer Science 736, Springer-Verlag, 1993, 317-
356.

[6] A. Nerode, and W. Kohn *“Multiple agent autonomous hybrid control systems” , in
Logical Methods: A Symposium in honor of Anil Nerode's 60th Birthday, (J. N. Crossley,
Jeffrey B. Remmel, Richard A., Shore, Moss E. Sweedler, eds.), Birkhauser, 1993.

[7] Wolf Kohn, Anil Nerode, J. B. Remmel, and Xiolin Ge, “Multiple Agent Hybrid
Control:"* Carrier Manifolds and Chattering Approximations to Optimal Control",
CDC9%4.

[8] Kushner H. J. and D. S. Clark "Stochastic Approximation Methods for Constained
and Unconstrained Systems", Springer -Verlag NY. 1978.

[9] KUsner H. J. ""general convergence results for stochastic approximations via weak
convergence theory" J.Math. Anal.and Applic., 61, 1977, pp. 490-503.

